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A B S T R A C T

We investigate the economic distributional effects of soil loss in Malawi, where erosion deprives rural house-
holds of the natural capital necessary to boost agricultural production and lifts food security. We employ a two-
year dataset combining unique topsoil loss data with socio-economic, agro-ecological and climatic information
both at household and plot level. We consider heterogenous impacts of soil loss in productivity, total con-
sumption and caloric intake by estimating an unconditional quantile regression model. The role of different
agricultural practices in mitigating the negative impacts of soil loss is also considered to assess cost-effective
policy options and compensation mechanisms and to provide aggregated effects. We show that large hetero-
geneous impacts currently exist across the most exposed population groups and such impacts could translate in a
production loss equivalent to 1 to 3% of Malawi’s GDP under different increasing soil erosion scenarios.

1. Introduction

Agricultural modernization has been at the top of the political
agenda of sub-Saharan African (SSA) countries since the 1990s. In a
region of the world with more than 20% of the rural population af-
flicted by stagnating undernourishment (WDI, 2019), structural pro-
ductivity shifters are necessary to increase both livelihood in the short
run and to foster development in the midterm (Senbet and
Simbanegavi, 2017). Growth in agricultural production has been
framed as a mechanism of intersectoral transmission where higher
yields should promote shifts of labor productivity in both secondary
and tertiary sectors. To this end, a strand of literature (de Vries et al.,
2015, among others) has attempted to identify the drivers of a stag-
nating yield of 1,300 kg/ha in the SSA vis-à-vis 4,171 and 3,130 re-
spectively in Latin America and Caribbean, and South Asia (Food and
Agriculture Organization of the United Nations, 2017).

Inertia in the convergence of SSA agricultural productivity is likely
driven by structural latent factors, among which a low nutrients
availability in the topsoil endowment plays a critical role (McArthur
and McCord, 2017). This characteristic is further exacerbated by the
soil erosion phenomenon (Drechsel et al., 2001; Delgado-Baquerizo
et al., 2013). Soil erosion is the absolute loss of topsoil and nutrients
carried away from the land by water or wind and transported to other

surfaces. It is a natural process especially in steep areas, but poor
management practices can increase the potential of soils to be eroded
(Hediger, 2003; Panagos et al., 2015). Soil loss can disrupt the natural
soil balance leading to a decrease in productivity potential (Pimentel
et al., 1995; Sanchez, 2002). As a consequence, exposed farmers face
reductions in yield and, indirectly, income loss, a decline in crop and
livestock farming activities and a drop in the value of agricultural land,
which leads to vulnerability, food insecurity and migration (Blaikie,
2016). The impact of soil loss is expected to worsen in the coming
decades because of high population growth, rapid deforestation and
intensive agriculture combined with the effects of climate variation
(Borrelli et al., 2017).

SSA represents a major source of concern in relation to the expected
climatic trends considering the regional dependence on subsistence
agriculture in rainfed lands (Mendelsohn and Dinar, 2009). Poorly ca-
pital endowed farmers are likely unable to manage and adapt to irre-
gular climate and upward erosion trends, particularly if the land con-
stitutes their principal asset (Noble et al., 2014). This causes a process
that Barrett and Bevis (2015) define a self-reinforcing poverty me-
chanism, in which households (HHs) ex-post smooth their meagre ex-
penditure and food consumption in response to shocks for which they
do not have an ex-ante insurance. In this scenario, a mix of policy in-
struments is necessary since the soil erosion heterogeneously affects
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communities and individuals (Kurian and Dietz, 2013).
Rural development programs need to identify how costs of soil

erosion are distributed among farmers. Thanks to this assessment, cost-
effective approaches could be based on tailored interventions that mix
standard agricultural policies with emerging programs such as con-
servation and climate-smart agriculture (Banwart, 2011; Lipper et al.,
2014).

Recent studies have defined a framework for the economics of land
degradation (Labrière et al., 2015; Nkonya et al., 2016a, b; Pierce and
Lal, 2017) and quantified the total costs of soil erosion with different
methods (for a complete review, see Telles et al., 2011). In particular,
research on the on-site costs1 has focused on the additional expenditure
for erosion control technologies or fertilizers required to minimize the
loss of soil nutrients and productivity reduction (Pimentel et al., 1995;
Lal, 2001), but it has also concentrated on the assessment of macro-
economic impacts combining empirical biophysical models (Borrelli
et al., 2017) with global computable general equilibrium models
(Pimentel et al., 1995; Panagos et al., 2018; Sartori et al., 2019).

Nevertheless, we know much less on how the on-site costs of soil
loss are distributed across a local population of rural HHs and how
policymakers could rely on this information to minimize impacts of
erosion. In this paper we fill this gap by studying the socio-economic
impacts of topsoil loss and its distributional effects on agricultural
productivity and two important welfare outcomes: per capita real
consumption and per capita caloric intake. We analyze the case of
Malawi, where topsoil loss represents a major threat to the overall
economic development since the value-added of the agricultural sector
accounts for approximately 26% of GDP and the rural population is
more than 80% (WDI, 2019). Moreover, according to recent studies
(Stevens and Madani, 2016; Msowoya et al., 2016; Food and
Agriculture Organization of the United Nations, 2017; Warnatzsch and
Reay, 2019; Katengeza et al., 2019), climate change in Malawi is ex-
pected to reduce the yield of major subsistence crops from 5 to 14% by
2050, with potential reinforcing feedback effects caused by projected
severe soil erosion rates; all together these factors make the country a
recognized global hot spot of land degradation (Borrelli et al., 2017).

In analyzing the impacts of soil loss, we employ a two-year novel
dataset with on-field validated data on topsoil loss rates, geographically
aligned with socio-economic and climate data both at HH and plot
level. We empirically estimate both a crop production function and two
welfare functions to evaluate the negative effects of soil loss on these
outcomes. To catch heterogenous impacts across different HHs, we
employ an unconditional quantile regression model, which presents the
strong advantage that quantiles are not defined by a vector of control
variables required to consistently estimate the functions. We find large
heterogeneous impacts of top soil loss, with larger and significant ef-
fects across the most exposed and vulnerable population groups. These
results are confirmed by robustness checks carried out with alternative
estimators.

Moreover, we evaluate the effectiveness of soil loss on-site mitiga-
tion interventions provided by strategic livelihood assets and adoption
of agricultural practices, and assess the cost-effectiveness of the main
Malawian agricultural development programme in face of hypothetical
topsoil loss scenarios. These additional results provide policy sugges-
tions useful to minimize the economic impacts of topsoil loss at national
aggregate level, to reorient the existing strategies, and to compensate
more vulnerable HHs with a support to adopt erosion control practices.

2. Background

2.1. Topsoil loss and rural development in Malawi

Soil erosion is a complex process driven by soil properties, ground
slope, land cover, agricultural practices and climate (Montgomery,
2007). These drivers, such as droughts and floods, variations in in-
tensity and length of rainy seasons, fires, unsuitable land uses and land
management practices, affect directly the land ecosystems (Nkonya
et al., 2016a, b). Land tenure, poverty, population density, weak reg-
ulatory environment in the agricultural and environmental sectors re-
present, instead, underlying causes of soil erosion since they affect in-
vestment decisions on land management (Rosa-Schleich et al., 2019;
Tarfasa et al., 2018; Boserup, 2017).

While the increase of soil erosion constitutes the main cause of land
degradation in the world (Borrelli et al., 2017), the dynamics of cli-
mate, land use and underlying drivers makes soil erosion a largely
impelling problem in SSA, generating negative impacts on already
stagnating agricultural production. A recent assessment of the soil
erosion uses a universal soil loss model (Fenta et al., 2020) to estimate
soil loss rates in 11 SSA countries, which range from 1.7 to 58.3 t ha-

1yr−1.
As a case study, Malawi is among the most relevant since it is

subject to severe rates of erosion, where erosion rates are considered
severe if higher than 10 t ha-1yr−1 (Holden and Lunduka, 2012; Borrelli
et al., 2017). Vargas and Omuto (2016) performed a local assessment
that revealed an average soil loss rate of 29 t ha-1year−1 at national
level and 15 t ha-1year−1 at farmland level. These figures are coherent
with global soil loss modelling which identifies Malawi within the
world’s 12 most exposed countries (Borrelli et al., 2017). Recently, the
Soil Loss Atlas of Malawi (2019) updated official national data of soil
loss, obtained by means of the Soil Loss Estimation Model for Southern
Africa (SLEMSA), a model belonging to the Universal Soil Loss Equation
(USLE) family models (Lal, 2001), and subsequent validation using field
measurements (Thakur and Nema, 2018). With over three-quarters of
the agricultural land exposed to severe topsoil loss, erosion represents
the major threat to food security and agricultural growth. In addition,
local projections of the effects of climate change raise concerns on fu-
ture exacerbation of the erosion rates (Warnatzsch and Reay, 2019).

An increase of topsoil loss rates downward shifts the land pro-
ductivity potential since it reduces the nutrients in the soil, enlarging
the risk of locking-in farmers in a poverty trap (Carter and Barrett,
2006). This mechanism is expected to severely hit HHs with a lower
chance to ex-post adjust their consumption level after an agricultural
stress, since their endowment of valuable marketable assets is limited.
Recent statistics in Malawi confirm that 50.7% of the population is poor
and 24.5% is ultra-poor, while the caloric intake of 50% of the popu-
lation is below the minimum level of 2100 calories per day (World
Bank, 2017). These figures worsen in the rural population, confirming
the link between the performance of the agricultural sector and the
welfare of farmers with limited chance of off-farm income diversifica-
tion (Darko et al., 2018).

Most of the Malawian rural development strategies have been
dedicated to promote growth of the agricultural productivity. The
universal Farm Input Subsidy Program (FISP) is a prominent example of
such strategy since 2005. This program massively subsidized the NPK
fertilizers and modern maize seed varieties, which is the main crop
cultivated by subsistence farmers (Kassie et al, 2015). Nonetheless,
when the topsoil loss rate is severe, these policies could be cost-in-
effective since the remaining subsoil layer has a weaker responsiveness
to external inputs (Bender and van der Heijden, 2015). Since at national
level less of 1% of the rural population received assistance on sustain-
able erosion control practices (Dougill et al., 2017), a debate has
emerged about the best strategy to minimize the costs of interventions
while increasing productivity and individual rural welfare (Arndt et al.,
2015).

1 Reduction in productivity is an on‐site private costs caused by soil erosion.
Nevertheless, large impacts, in terms of total economic value loss arise from
off‐site social costs as well (Colombo et al., 2005; Kirui, 2016). These can
consist of desertification, rural depopulation, siltation of waterways or reduc-
tions in biodiversity and should be internalized by policy makers when plan-
ning benefit/cost analysis of intervention to reduce the soil erosion (Nearing
et al., 2017).
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2.2. Conceptual framework

We investigate the distribution of socio-economic impacts of topsoil
loss drawing from the sustainable rural livelihood framework (SRL),
which provides a theoretical framework to analyze the choices made by
a farmer that manages her welfare in a context of market failures and
agricultural stresses (Ellis, 2000). The SRL has been widely adopted in
the context of SSA since markets and institutions are weak and climatic
or agroecological factors can limit the livelihood options available to
HHs (Asfaw et al., 2018a, b; Call et al., 2019; Donkor, 2019). We adapt
this framework to the context of Malawi, which suffers severe topsoil
loss rates and climatic shocks, and where the opportunities to spread
the agricultural risks with off-farm activities are limited by failures in
wage labor market (Walther, 2018; Asfaw et al., 2019).

We consider a rural HH, i, who represents a decision-making unit
whose welfare level is a function of available options to tackle adverse
events, such as soil loss. These options depend on a set of assets, Ki, to
which the HH i has access. In particular, Ki includes
K K K K K{ ; ; ; ; }i

N
i
P

i
H

i
F

i
S that symbolizes natural, physical, human, fi-

nancial and social capital, respectively. Ki interacts with the institu-
tional and organizational local context to define the livelihood strate-
gies suitable to HHs (Scoones, 1998). At a local or administrative level,
this context is homogenous to farmers (Michalopoulos and
Papaioannou, 2014), but the cost of coping with soil loss is hetero-
geneous since heterogenous is the mix of tangible and intangible assets
that compose Ki (Suri, 2011).

Severe topsoil loss rates cause a reduction in HHs’ land productivity,
which in turn affects the national agricultural sector. At the same time,
the welfare of poorly endowed HHs risks to be disproportionally im-
pacted on, increasing rural vulnerability and inequality. In order to be
cost-effective, rural development programs need to identify how costs
of soil erosion are distributed among farmers and which components of
K help to distress the productivity shock. Then the Government should
tailor a set of mixed interventions that target best responsive farmers
and compensate the welfare reduction of losers (Sheahan and Barrett,
2017; Asfaw et al., 2017).

3. Material and methods

3.1. Data

We employ three sources of data to analyze the distributional im-
pacts of soil loss on farmers’ productivity and welfare. First, the recent
Soil Loss Atlas of Malawi (Omuto and Vargas, 2019), implemented by

FAO, UN Environment Programme, UN Development Programme and
the Malawian Ministry of Agriculture, Irrigation and Water Develop-
ment (MAIWD), constitutes a novel and unique data source collecting
information on topsoil loss expressed as tons per hectare per year. The
Atlas addresses the urgent need for updated national statistics and in-
formation on soil loss rates, which were not reviewed since 1992. The
approach used in the assessment is based on the application of the Soil
Loss Estimation System for Southern Africa (SLEMSA) model (Lal, 2001;
Liu et al., 2013; Breetzke et al., 2013; Thakur and Nema, 2018).
SLEMSA is a soil loss models based on mathematical/empirical re-
lationships between lost soil and soil loss contributing factors (Nearing
et al., 2017). It consists in a crop ratio model, a soil loss from bare soil
model and a topography model (Elwell, 1978; Elwell and Stocking,
1982). The outputs of these sub-models are combined to obtain the soil
loss rate. Each of these sub-models is further developed from mod-
ifications or combinations of the following input factors: climate, soil
texture, crop cover fraction, and topographic slope-length (see
Abdullah et al., 2017 for a review). The application of the SLEMSA
model in Malawi was accomplished by defining a protocol for sourcing
the input data, exploitation of GIS software and hardware with sec-
ondary data on soil conditions, vegetation covers, agroecological zones,
rainfall, wind patterns, and soil slopes. In a second step, the outcomes
have been on-field validated on 104 sites and then calibrated on the
input factors related to the GIS coordinates available for the socio-
economic survey that we use in this study. For full details on the
SLEMSA model and on field validation in Malawi see Omuto and Vargas
(2018). Fig. 1 illustrates both the placement of Malawi on the left panel
and the level of topsoil loss at the district level for the years 2011/2012
and 2012/2013 on the right panel.

Our second data source consists in climate information collected
from the Africa Rainfall Climatology 2 database (ARC2)2. These data
enable us to calculate the standardized precipitation evapotranspiration
index (SPEI), which is increasingly employed in economic studies to
address the impact of climatic variability on welfare and agricultural
production (Asfaw et al., 2017, 2018a, b; Di Falco et al., 2018, among
others). This index presents specific advantages over other indicators. It
is based on the probability of recording a given amount of evapo-
transpiration, which is the amount of water lost from a cropped surface.
The probability is standardized, with a value of zero indicating the
median amount (half of the historical amounts are below the median,
and half are above the median), thus the index is negative for drought,

Fig. 1. Left - Malawi; right - topsoil loss (t ha-1yr−1), by district.

2 For further details, see Novella and Thiaw (2013).

S. Asfaw, et al. Ecological Economics 177 (2020) 106764

3



and positive for wet conditions. The characteristic of being standar-
dized provides a straightforward interpretation and allows for a fully
indexed comparison through time and space (Vicente-Serrano, 2010).
Moreover, SPEI is able to capture both short-term and long-term
anomalies depending on the time scale over which is calculated. We
compute SPEI at a six month time scale, which captures the rainfall
deviations during the rainy season spanning from November to April in
Malawi3.

The horizontal gray lines in Fig. 2 indicate, respectively, a threshold
level higher than 1.5 and lower than −1.5, which are considered levels
of SPEI over which severe rainfall excess or drought shocks, respec-
tively, are faced by the population. The black line shows the SPEI dy-
namics averaged over all the EAs in the sample during the period
1988–2014. The blue (red) circles represent the maximum (minimum)
SPEI values registered over the period 1988–2014 in specific EAs; these
represent local “hot spots” whit SPEI values much larger than the in-
sample mean (black line), meaning that Malawi experienced repeated
and severe climate shocks at a local level.

The third source of data is the World Bank LSMS-ISA socio-eco-
nomic survey. It supports multiple rounds of a panel survey and pro-
vides detailed information on individual agricultural activities at HH
and plot level, HHs’ socio-economic characteristics and community
(EA) infrastructures. The survey has been conducted in Malawi during
2011 and 2013. The overall sample is representative at the national,
regional, district and urban/rural levels. In total, 3247 HHs were visited
twice in 2011 (in the post-planting and post-harvest periods with re-
spect to the rainy agricultural seasons) and were tracked and re-inter-
viewed in 2013.

The final sample of our analysis is obtained by firstly matching the
LSMA-ISA survey with the soil loss assessment data through GIS co-
ordinates; we then align this dataset with the ARC climate data at the
EA, HH and plot level to allow for a complete and representative pooled
dataset with economic, social, agronomic and climatic information.

Table 1 shows the descriptive statistics of all the relevant variables
included in the econometric model.

Maize yield represents our agricultural outcome to measure pro-
ductivity since maize represents the most cultivated crop across the
country, while for welfare we estimate impacts on the real per capita
consumption in Malawian Kwacha (MWK) and per capita caloric intake
per day.

Fig. 3 shows the probability density function of topsoil loss by
deciles of maize yield. Fig. 4 reports the violin plots with density,
median interquantile ranges and extreme values of the two welfare
indicators according to three categories of topsoil loss, ranked by se-
verity.

In both graphs we observe a large heterogeneity of the outcome
distribution in relation to the investigated erosion phenomena, sig-
naling that soil loss might indeed disproportionately affect least-pro-
ductive and poorest HHs. We also observe that the values of welfare
outcomes corresponding to low topsoil loss are higher than other ca-
tegories.

Covariates in Table 1 are selected according to the relevant litera-
ture related to the SRL framework. As discussed in Section 2, HH’s
options to adjust their production and welfare level in response to
agricultural stresses depend on an endowment of assets Ki, along with
agricultural inputs and institutional/contextual variables (Carter and
Barrett, 2006). In our setting, the natural capital is represented by the

size of cultivated area and agroecological zone (AEZ) (Nguyen et al.,
2017). To control for the physical endowment of the HH we use the
rural wealth index (Hargreaves et al., 2007). The human capital is re-
presented by the HH members, education level, age and gender of the
HH head, and men days of labor employed on a plot (Asfaw and
Maggio, 2018). The financial capital is represented by the index of
access to infrastructure as a proxy for credit and market access (Beck
et al., 2009), the percentage of income depending on the agricultural
activities as an indicator of financial vulnerability (Dercon, 2002) and a
parliament representative hailing from the EA as a proxy for the ca-
pacity to obtain agricultural subsidies, extension services or post-stress
coping measures (Snapp and Fisher, 2015). Finally, we use the distance
from the main urban center expressed in kilometers and the endowment
of ICT technologies (TVs, mobiles, radios, computers) to capture the
social capital and networking capacity. There is strong empirical evi-
dence suggesting that spatial proximity favors market and information
access, thereby facilitating a labor diversification process that increases
the capacity of HHs to response to agricultural income shocks (Shiferaw
et al., 2015). District fixed effects are also included to account for
systematic differences in the institutional context (Scoones, 1998).

Among the covariates presented in Table 1, we include a set of
agricultural inputs, including those incentivized by the Malawian gov-
ernment with the FISP program through the distribution of coupons.
These consist of NPK fertilizers and pesticides, and the adoption of
modern seeds varieties of maize. Moreover, we also include controls for
practices favoring a subsistence risk-adverse type of agriculture, such as
the legume intercropping or the crop diversification calculated with the
Shannon index4 at plot level (Gollin et al., 2002; Chavas and Di Falco,
2012; Coromaldi et al., 2015) and for other agricultural practices that
can sustain productivity (Teklewold et al., 2013). To this end, Table 2
reports the proportion in the implementation of a set of erosion control
practices and the plot fallow during the past five survey years
t t, ,1 5, along with the mean and standard deviation of topsoil loss. A
significance test for the equality of means of topsoil loss by categories of
the two practices is also reported.

Fig. 2. Monthly mean SPEI values and SPEI shocks, during the period
1990–2013.

3 To calculate SPEI values we employ the SPEI R package by Beguería and
Vicente-Serrano (https://cran.r-project.org/web/packages/SPEI/SPEI.pdf).
SPEI values represent, essentially, a water balance calculated at different times
and geographical areas. The required inputs for computing the SPEI are
monthly differences between precipitation and potential evapotranspiration
(PET) on a set of geographical coordinates. PET is the amount of evaporation
and transpiration that would occur if a sufficient water source were available.

4 The Shannon diversity index is calculated as: = =H p lnpj c
C

c c1 , where pc is
the proportion of area cultivated with crop c on the total cultivated area of the
farmer j. The index calculates the uncertainty to predict the species identity of
an individual that is randomly observed from a community. The higher is the
value of the Shannon index, the higher the uncertainty and consequently the
evenness in the dataset is lower. The use of Shannon index is diffused in lit-
erature (Di Falco and Perrings, 2005; Coromaldi et al., 2015; Pallante et al.
2016; Di Falco et al., 2014; Asfaw et al., 2018a, b). For a review of the diversity
indicators, with their pro and cons, see Duelli and Obrist (2003).
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3.2. Empirical strategy

Our objective is to estimate the different expected impact across
HHs of the topsoil loss on maize productivity Y (kg/ha) and welfare per
capita indicators W , namely the real consumption expenditure (MWK/
pc) and per day caloric intake (cal/pc/pd). To this aim, we estimate a
Cobb-Douglas productivity function at plot level (1) and two welfare
functions at HH level (2), as follows:

= + + + + + + + +Y Loss K AI AP loss AP SPEI t( )p p p i p p p p EA p/ (1)

= + + + + + +W Loss K C SPEI ti i i i EA i (2)

where p indicates the plot, and i the HH. Loss is the soil loss converted
in kg/hectare, K is a vector of endowments which includes natural,
physical, human, financial and social capital both at HH or plot level, AI
is a vector of agricultural inputs, while AP is a vector of erosion control
agricultural practices interacted with Loss to evaluate their topsoil loss
mitigation capacity, C is a vector of additional relevant controls to

Table 1
Descriptive statistics (EA, HH and plot level).

Variable Description Mean Std. Dev.

Dependent variables
maize_yield Maize productivity (kg/ha) 1912.44 1208.73
rexpaggpc Real per capita expenditure in Malawian Kwacha (MWK/pc) 50727.46 47727.52
calories Caloric intake per capita per day (cal/pc/pd) 1968.17 1040.64
Shocks
topsoil_loss Top soil loss (tons per ha) at plot level 15.24 8.25
s_r_spei Rainfall shock experienced (%) in the EA 0.38 0.49
s_d_spei Drought shock experienced (%) in the EA 0.46 0.50
Agricultural inputs
fert1 Chitowe (kg/ha) applied on plot 128.49 203.90
fert2 Urea (kg/ha) applied on plot 102.91 181.45
fert3 Compound (kg/ha) applied on plot 13.03 57.13
fert4 Other fertilizers (kg/ha) applied on plot 6.86 56.95
organic_fert Organic fertilizer (kg/ha) applied on plot 106.92 383.36
pesticides Pesticides (kg/ha) applied on plot 0.079 2.91
seeds Seeds amount (kg/ha) applied on plot 39.13 40.79
D_crop_groundnut HH cultivates groundnut on maize plot (%) 0.27 0.44
D_crop_legume HH cultivates legumes on maize plot (%) 0.10 0.31
D_crop_other HH cultivates other crops on maize plot (%) 0.42 0.49
MV Modern Variety Seed (%) applied on plot 0.52 0.50
S Shannon index of crop diversity 1.67 0.90
Natural Capital
plot_area Area of cultivated plot (ha) 0.43 0.40
aez1 Tropic -Warm/Semiarid (%) 0.41 0.49
aez2 Tropic-Warm/Subhumid (%) 0.36 0.48
aez3 Tropic-Cool/Semiarid (%) 0.10 0.31
aez4 Tropic-Cool/Subhumid (%) 0.12 0.33
Physical capital
wealth HH rural wealth index 0.23 1.34
Human Capital
agehead Age of HH head (years) 43.92 16.20
femhead Female headed HH (%) 0.24 0.43
educave Ave. no. of school years of HH members aged 15–60 5.21 2.69
hhsize Number of HH members (count) 5.03 2.32
labor Men days of labor on plot (men days/ha) 248.32 186.54
Financial Capital
infraindex EA index of access to infrastructure −0.02 0.88
spfarm2 HH is specialized in agriculture (greater than75% of income) 0.42 0.49
parliament In the EA resides a parliament member (%) 0.11 0.31
Social capital
disturban Distance of HH from the main urban center (Km) 113.72 107.31
tech_endow HH is owner of communication technologies (%) 0.60 0.49
year_2013 Year of survey = 2013 (%) 0.22 0.41
N Number of households (HH) 7255
N Number of plots 9244

Fig. 3. Probability density function of topsoil loss, by deciles of maize yield.
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explain the two welfare outcomes, SPEI is a vector of binary indicators
for rainfall and drought shocks at EA level assuming value 1 for SPEI

1.5 or SPEI 1.5, respectively; t is a dummy representing the survey
year, is a random error term and , , , , , , and are unknown
parameters to be estimated. We also include agroecological zone (AEZ)
dummies in equation (1) and district dummies in equation (2).

Since we are interested in the distributional impacts of the topsoil
loss on the welfare measures Y and W , simple OLS estimates are not
able to catch such impacts since it estimates conditional mean of the
outcome variables while its distribution could vary in many ways that
are imperfectly revealed by looking at the simple mean. Therefore, we
estimate equations (1) and (2) by means of a class of quantile regres-
sions. As documented in Figs. 3 and 4, our empirical strategy is moti-
vated by the observation of a high degree of heterogeneity in the

distribution of maize productivity and welfare indicators, conditional to
the topsoil loss; the conditional quantile regression (CQR) is a powerful
estimator to discover the effects over the entire distribution (Koenker
and Bassett, 1978).

This approach has been the cornerstone in estimating the distribu-
tional effects in social sciences. Nevertheless, the CQR has been recently
questioned by the fact that quantiles are defined conditional on the
control variables. As a consequence, including a vector of controls, such
as the vector K , determines a different redefinition of quantiles with
respect to the exogenous treatment of the topsoil loss level. Considering
this shortcoming, the unconditional quantile regression (UCR) model,
developed by Firpo et al. (2009), presents the strong advantage that
quantiles are pre-regression defined, so that the model is not guided by
the vector of right hand-side variables (Borgen, 2016). While both CQR
and UQR can capture the topsoil loss differential effect on a spectrum of
maize productivity and welfare distribution, the main distinction is that
the CQR estimates Y q Loss K AP SPEI

Loss
( | , , , )th

, while the UQR estimates Y q
Loss
( )th

,
where qth represents the value of the outcome variables at the th
quantile. In simpler words, the CQR reports a “within-group” marginal
effect conditional on the mean values of all the regressors included in
the empirical specification, while the UQR allows to estimate the im-
pact of the topsoil loss on the th quantile of the unconditional dis-
tribution of the welfare outcome. This feature is highly appealing in our
setting since adding or changing control variables does not alter the
interpretation of the topsoil loss effects. To estimate the UQR, we use
the re-centered influence function (RIF) proposed by Firpo et al. (2009).
The RIF can be defined as follows:

= +Y q F q th Y q
f q

RIF( ; , ) { }
( )

th
Y

th
th

Y
th (3)

where Y q{ }th is an indicator function equal to one when the value of
outcomes at the individual level is below the quantile qth and zero
otherwise, fY represents the unconditional probability density function
(PDF) of Y evaluated at qth, and FY is the cumulative distribution
function (CDF). The RIF regression model is the conditional expectation

=Y q F X XE[RIF( ; , )| ]th
Y

th, where X is a vector of covariates which

Fig. 4. Violin plots of expenditure per capita (MWK) and caloric intake per capita (calories per capita per day), by soil loss category.

Table 2
Descriptive statistics of erosion control and fallow practices.

Variable (plot
level)

Description Proportion (%) topsoil loss
(t ha−1/year)

mean Std.
dev.

Erosion control

• no measures 60.95 15.19** 8.40

• terraces 3.64 14.07*** 7.96

• bunds 27.45 15.70*** 7.83

• vetiver grass 6.18 14.34*** 9.39

• tree belts 1.28 14.08** 6.71
D_Fallow

• no No fallow applied
during the past
5 years

86.79 15.38* 8.33

• yes Application of fallow
during the past
5 years

13.21 15.15* 7.98

Notes: t test on the equality of means of topsoil loss: * significant at 10%; **
significant at 5%; *** significant at 1%.
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includes Loss and other controls presented in equation (1) and (2)5.
Finally, from equation (1), we simulate the aggregated national

effect in terms of total tons (T) of maize production loss associated to an
increase in the topsoil loss as follows:

= =
=

T
dLoss

national maize production
for th

( )
1, ..,9.

p
N th

p
ha

1
p

p

(4)

where dLossp is a hypothetical percentage increase of the topsoil loss for
each plot p, while ha are the cultivated hectares, weighted using sample
plot weights on the total national maize area p. Dividing by the total
national maize production, we obtain the percentage of total loss gen-
erated by alternative scenarios of topsoil loss increase. Moreover, by
multiplying the numerator in (4) by the average national maize unit
price of P , and dividing by the national GDP, we obtain a measure of
the monetary value of maize production loss expressed in terms of
GDP6, which in formula corresponds to:

= =
=

GDP
dLoss P

GDP
for th

( )
1, ..,9.

p
N th

p
ha

1
p

p

(5)

In addition, a policymaker may be interested in the aggregate mi-
tigation effects provided by specific erosion control measures. In our
framework, this can be estimated by substituting th with th in (4) and
(5) from the RIF estimation of Equation (1) and comparing the overall
loss with the baseline case where the erosion control measures are
absent.

4. Results

4.1. Impact on productivity

Table 3 presents the results from the UQR estimates of the impact of
topsoil loss on maize productivity (full results are shown in Appendix A,
Table A1).

The function is specified as a log–log functional form for all con-
tinuous covariates and contains estimates from the first to the ninth
decile. As suggested by Firpo et al. (2009), robust standard errors are
bootstrapped with 500 replications7.

The impact of soil loss appears heterogeneous and significant along
the distribution of the productivity variable, with monotonically ne-
gative effects ranging from the highest level of −0.26 on the first decile
and the lowest one on the sixth decile. Conversely, higher deciles of
productivity are not significantly influenced by soil erosion.

Results from the UQR are compared with results obtained from OLS
and CQR models; Fig. 5 shows the impacts of soil loss, by decile, and
associated 95% confidence intervals8.

The CQR model provides significant negative impacts of soil loss on
all deciles, compared with the coefficients estimated by means of UQR.
Moreover, the magnitude in the first three deciles is lower than the one

obtained from the UQR model. Nonetheless, some caveats exist when
comparing CQR and UQR since the UQR provides the distributional
effects at the outcome population level, showing how, ceteris paribus, Y
and W change at any quantile of their distribution for a 1% increase of
the topsoil loss (Peeters et al., 2017).

The other covariates included in the analysis show the expected
signs (see Table A1 in the Appendix A). Six patterns of our results de-
serve a comment. To begin with, the human capital endowment influ-
ences both negatively and positively the productivity through, respec-
tively, the gender of the HH head and the education level. Second, all
the agricultural inputs are associated with an increase in productivity.
Third, a larger natural capital, represented by the plot size, is associated
with a lower productivity as a consequence of reduced efficiency in
production for large land endowments; this effect is more pronounced
in the lower deciles of the distribution. Fourth, a mixed intercropping,
represented by the coefficients of the Shannon diversity and those of
groundnut and legumes cultivation, favor the maize productivity, with
larger impacts along the higher deciles of the distribution. Fifth, among
the erosion control practices, the plantation of vetiver grass emerges as
the most effective in boosting maize productivity. Finally, weather
shocks are significantly associated with productivity changes. Specifi-
cally, we observe that an excess of rainfall boosts the productivity in the
first and second deciles, while a drought shock is associated with a
persistent negative productivity performance along the whole dis-
tribution, with least-productive farmers relatively more affected.

Figs. 6 and 7 report marginal effects with 95% CIs from a set of UCR
estimates obtained by interacting the soil loss with AEZ and erosion
control practices, respectively. Fig. 6 shows that the highest negative
effect of topsoil loss concentrates in tropic-cool semiarid areas, followed
by the tropic-warm semiarid, while for sub-humid areas we do not
observe any significant impact on the higher deciles. Fig. 7 shows the
mitigation effect determined by the implementation of erosion control
practices for a 1% increase of the topsoil loss. While among the in-
vestigated practices the terraces are never significant in explaining
changes in maize productivity, the other practices are significantly as-
sociated with a reduction in the loss of maize yield compared to the
baseline case in which these measures are absent.

Taken together, our results suggest that the most effective measure
for topsoil loss mitigation is the vetiver grass system. Moreover, we also
observe that the tree belts practice is less efficient than other measures
in the lower deciles and not significant in the higher deciles.

4.2. Impact on consumption and caloric intake

Turning to the welfare effects, Table 4 reports the coefficients of the
topsoil loss on real per capita consumption (model a) and caloric intake
(model b). Both models are specified on a log–log functional form.

We observe that the magnitude of the impact of topsoil loss on the
welfare indicators is highly reduced compared with the effect on maize
productivity. Moreover, while across the distribution of the per capita
consumption the negative impacts are limited up to the median class, in
the case of per capita caloric intake the topsoil loss is significant across
all the distribution deciles. The effect of other covariates is reported in
Appendix A (Tables A2 and A3) and confirms as HHs that do not di-
versify the income sources show lower levels of consumption and ca-
loric intake, while larger endowment of physical and financial capital is
particularly effective in increasing welfare.

4.3. Aggregate effects

Following the methodology described in Section 4.2, we offer an
assessment of the impacts of topsoil loss at national level to provide a
cost-effectiveness analysis of the main existing rural development pro-
gramme in face of potential erosion trends.

Table 5 reports the costs of three scenario hypotheses of topsoil loss
increase, assuming an incremental growth of, respectively, 10, 20 and

5 The UQR is practically estimated by means of a two-step procedure, where
in the first step a non-parametric kernel density of fY is obtained. In the second
stage, an OLS of the RIF regression model is implemented in order to obtain
unconditional quantile partial effects th. Given the two step procedure, robust
standard errors are obtained through bootstrapping (Baltagi and Ghosh, 2017)
and the UQR estimator is n consistent, asymptotically normal and efficient
(Frölich and Melly, 2013).

6 Both measures calculated in (4) and (5) are aggregate measures of the
quantile effects expressed in terms of reliable macroeconomic indicators but
should not be interpreted as national real macroeconomic adjustments to ex-
ternal shocks.

7 A limitation of UQR is that there is no statistically valid method to cluster
standard errors. Nevertheless, in Section 4.4 we provide a robustness check of
our results that relies on a fixed effect estimator with bootstrapped clustered
robust standard errors at HH-plot level.

8 The full set of estimates are available as supplementary material in Table S2.
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Table 3
Unconditional quantile regression (UQR): impact of soil loss on maize productivity.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

Topsoil loss −0.262*** −0.235*** −0.173*** −0.106*** −0.099*** −0.069** −0.032 −0.028 −0.032
(0.065) (0.041) (0.035) (0.028) (0.028) (0.027) (0.022) (0.027) (0.032)

N 9244

Notes: robust standard errors in parentheses are obtained through bootstrapping with 500 replications. * p < 0.1, **p < 0.05, ***p < 0.01; agroecological zone
dummies and interactions between agroecological zone and topsoil loss are included.

Fig. 5. Estimated quantile effect of topsoil loss on maize productivity; left - Ordinary Least Squares (OLS) vs Conditional Quantile Regression (CQR); right - OLS vs
Unconditional Quantile Regression (UQR), with 95% confidence intervals (CIs).

Fig. 6. Marginal effects of topsoil loss increase, by AEZ.
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30%. The total loss in maize production is expressed in tons, T , while
the loss in maize production is expressed in terms of GDP value, de-
noted by GDP. We estimate these impacts both for a baseline case
without erosion control practices, and when adopting one of the prac-
tices that result significant in explaining the erosion mitigation.

In terms of maize production, our estimates suggest that for topsoil
loss increases between 10% and 30%, the reduction would range from
6.87 to 20.62% compared with the baseline case. However, these re-
ductions could be less severe with the application of vetiver grass,
followed by erosion bunds and tree belts. In addition, we observe a loss
in maize production corresponding to 1% to 3% of the GDP value
compared with the baseline case, which could be reduced up to 0.56%

and 1.7% by adopting vetiver grass measures, respectively in the two
worsening scenarios.

4.4. Robustness check

Given the cross-sectional nature of our baseline econometric setup,
it could be argued that the level of topsoil loss may be correlated with
time-invariant unobservable characteristics of the HH or plot which
would lie in the error term. To address this concern, we present an
additional set of estimates of the impact of topsoil loss based on an
alternative estimator, namely the unconditional fixed effect quantile
regression (FE-UCR) (Graham et al., 2018). The FE-UCR estimator

Fig. 7. Marginal effects of topsoil loss increase, by erosion control practices.

Table 4
UCR - welfare indicators.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

a) rexpaggpc
Topsoil loss −0.065*** −0.081*** −0.087*** −0.068*** −0.044*** −0.015 −0.017 0.028 0.027

(0.016) (0.015) (0.014) (0.015) (0.015) (0.016) (0.017) (0.019) (0.025)

b) calories
Topsoil_loss −0.063*** −0.089*** −0.060*** −0.061*** −0.039*** −0.042*** −0.038*** −0.025* −0.027*

(0.022) (0.014) (0.012) (0.012) (0.012) (0.012) (0.011) (0.013) (0.016)
N 7255

Notes: robust standard errors are in parentheses obtained through bootstrapping with 500 replications. * p < 0.1, **p < 0.05, ***p < 0.01; agroecological zone
dummies and district dummies are included; interactions between AEZ and topsoil loss are included.

Table 5
Aggregate effects of topsoil loss increase scenarios in terms of total maize production and GDP value.

No Antierosion Bunds Vetiver grass Tree belts

Topsoil loss increase T GDP T GDP T GDP T GDP

+10% −6.87% −1.01% −4.42% −0.65% −3.83% −0.56% −5.88% −0.87%
+20% −13.74% −2.03% −8.84% −1.30% −7.66% −1.13% −11.77% −1.17%
+30% −20.62% −3.04% −13.26% −1.95% −11.49% −1.70% −17.65% −2.62%

Notes: macroeconomic data used in the analysis, Source FAOSTAT - total maize area harvested (ave. 2011–2013) = 1,676,067.5 ha; Maize producer price 2011
(LCU/ton) = 30,319 MWK; Maize producer price 2013 (LCU/ton) = 106,648 MWK; GDP 2011 (millions LCU) = 1,252,750 MWK; GDP 2013 (millions
LCU) = 1,901,100 MWK.
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accounts for both the heterogeneous effect along the distribution of the
outcome and the unobserved heterogeneity (Borgen, 2016). This fea-
ture is particularly relevant if the soil loss is correlated with plot or HH’s
unobservable characteristics such as skills or structural soil nutrients
availability. In order to obtain FE-UCR estimates, we build a two-year
balanced panel subsample, which consists in 1527 plots and 1408 HHs.
Table B1 in Appendix B provides a comparison of the two samples at
plot level based on the outcomes means and covariates. From the
comparison between column 1 (pooled) and column 2 (panel) it
emerges that the baseline sample does not substantially differ from the
total LSMA population and it is plausibly not affected by selection.

Table 6 reports FE-UCR estimates of the impact of soil loss on maize
productivity (model a) and on the two welfare outcomes (model b and

c)9. Results are consistent with our main findings obtained in Sections
4.1 and 4.2.

These estimates confirm, with a slight difference in magnitude on
the first decile, the negative impact of soil loss on productivity, with
heterogeneous and decreasing effects that depict a sharper pattern since
less than 50% of the sample distribution is influenced by soil loss.
Similarly, effects on the welfare outcomes show a similar pattern, with
coefficients larger in magnitude10.

As second robustness check, we offer an estimation based on a
generalized quantile regression estimator (GQR), which relies on an
instrumental variable (IV) approach to estimate counterfactual quan-
tiles of the maize productivity distribution for different values of the
soil loss (Chernozhukov and Hansen, 2005; Powell, 2016). In this set-
ting, we test whether the soil loss is correlated with specific ability to
cope with soil erosion and other unobservable characteristics which
would make topsoil loss as-good-as random across farmers, giving rise
to endogeneity. Results from the GQR estimator (Table S5 in the sup-
plementary material) confirm the same pattern as observed in both
UQR and FE-UQR estimates.

5. Discussion

Our results show that topsoil loss has sizable impacts on maize
productivity of the most vulnerable HHs, while not having influence on
higher deciles of the distribution. This evidence is robust to different
estimators and model specifications.

This heterogeneity should be considered by policymakers when
planning interventions aimed at enhancing rural development. In this

Table 6
FE-UQR.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

(a) maize_yield
Topsoil loss −0.213*** −0.193*** −0.094** −0.085** −0.055 −0.024 −0.031 −0.047 −0.033

(0.080) (0.066) (0.047) (0.044) (0.043) (0.041) (0.041) (0.052) (0.052)
N 3054

(b) rexpaggpc
topsoil_loss −0.131*** −0.122*** −0.097*** −0.075** −0.048 −0.004 −0.022 −0.020 −0.042

(0.057) (0.046) (0.042) (0.040) (0.041) (0.041) (0.040) (0.044) (0.051)
N 2816

(c) calories
topsoil_loss −0.102** −0.086*** −0.080*** −0.064* −0.045* −0.036* −0.006 −0.021 −0.025

(0.051) (0.033) (0.031) (0.035) (0.025) (0.021) (0.027) (0.030) (0.037)
N: 2816

Notes: * p < 0.1, **p < 0.05, ***p < 0.01; Model (a): robust standard errors clustered at HH-plot level in parentheses are obtained through bootstrapping with 500
replications; strongly balanced group = (hhid, plot_id). controls (agehead femhead educave hhsize plot_area labour fert1 fert2 fert3 fert4 organic_fert pesticides seeds
MV D_crop_groundnut D_crop_other D_crop_legumes S s_r_spei s_d_spei topsoil_loss 4 Iplot_meas_2 _Iplot_meas_3 _Iplot_meas_4 _Iplot_meas_5 _ID_fallow_1); Model (b):
robust standard errors clustered at HH level are in parentheses, obtained through bootstrapping with 500 replications; controls (agehead femhead educave hhsize
plot_area spfarm2 wealth infraindex parliament D_crop_groundnut D_crop_other D_crop_legumes s_r_spei s_d_spei topsoil_loss); Model (c): robust standard errors
clustered at HH level are in parentheses, obtained through bootstrapping with 500 replications; controls (agehead femhead educave hhsize plot_area spfarm2 wealth
infraindex parliament labour fert1 fert2 fert3 fert4 organic_fert pesticides seeds MV D_crop_groundnut D_crop_other D_crop_legumes s_r_spei s_d_spei topsoil_loss)

Fig. 8. Proportion of coupons FISP distribution (%) and yield (Kg/ha), by dis-
trict (average 2011–2013).

9 The full set of estimates are available as supplementary material in Table S1,
S3 and S4.

10 We use a dummy variable of the inherited plot property as an instrumental
variable for the suspected endogenous variable. The rationale for this instru-
ment lies in the fact that, if an HH inherits the land (71% of plots in our
sample), this status is binding in defining the initial endowment (the stock), and
does not directly affect the annual current productivity. The literature indeed
demonstrates that the annual productivity mostly depends on the degree of
tenure security (Lovo, 2016). This mechanism has been extensively explained in
reviews studies (Place, 2009; Fenske, 2011) and confirmed also within the
Malawian historical context (Place & Otsuka, 2001; Lovo, 2016; Deinenger
et al., 2019).

S. Asfaw, et al. Ecological Economics 177 (2020) 106764

10



respect, our study confirms the importance of the farmers’ endowment
in allowing rural livelihood options in order to face agricultural shocks
(Call et al., 2019). In fact, more productive HHs are likely to be en-
dowed with a richer set of assets, in particular physical, human and
financial assets, which can help them contrast the productivity impacts
of topsoil loss and contemporaneously enhance their livelihood poten-
tial (Davis et al., 2017).

In addition, when comparing marginal effects of topsoil loss vis-à-vis
those of fertilizers, we find a larger magnitude of topsoil loss coeffi-
cients. Since more productive farmers are not affected by an increase in
erosion, it could be verified that mid-productive HHs are those for
which the access to fertilizers has a relatively larger impact in offsetting
the negative effects of topsoil loss. Put differently, while fertilizers in-
crease the productivity, policymakers should orient the subsidies dis-
tribution towards mid productive HHs in order to obtain a cost-effective
mitigation impact. We show that this reduction is within a range of
1–3% of Malawi’s GDP value. Hence, since mid-productive HHs mini-
mize the gap between the negative effects of soil loss and the beneficial
effects on the productivity, providing most vulnerable HHs with the
largest share of coupons to obtain subsidized fertilizers, as in the
Malawian FISP (Asfaw et al., 2017), could result in a sub-optimal policy
targeting with limited productivity mitigation in aggregate terms. To
explain this point, Fig. 8 compares at district level the proportion on
national distribution of received FISP coupons with deciles of maize
yield. Some southern districts, that received a relatively large share of
subsidies (dark green in Fig. 8), match with highest deciles of pro-
ductivity (clear green Fig. 8).

Moreover, some north-eastern districts with low levels of pro-
ductivity received a relatively larger share of coupons. This suggests
that, at constant budget, still exists room for redistributing subsidies to
help mitigate the impact of topsoil loss in a cost-effective manner.

On the other hand, less productive farmers would be net losers from
revising the targeting criteria of fertilizers coupons and should be
compensated for the reduction of productivity and welfare. This com-
pensation could come from a support to the adoption of erosion control
practices, which show a relatively larger topsoil mitigation potential for
HHs in the lowest productivity deciles; vetiver grass and control bunds,
in particular, offer the largest mitigation effects for this population
group.

Nevertheless, these practices are expensive to poorer HHs and might
be supported by public intervention. To this end, our results suggest
that the opportunity cost of public budget allocation would be reduced
from incentivizing the adoption of effective erosion control practices by
losers HHs and, thus, such a support would not increase the public
expenditure on rural assistance.

Our results also suggest that topsoil loss deteriorates the HH wel-
fare, but these effects are mild or even disappear for wealthier HHs,
which are likely to better ex-ante adapt or ex-post cope with increasing
erosion phenomena. Finally, an important distressing mechanism is
provided by income diversification, which can reduce the proportion of
on-farm income and, as a consequence, the risk of productivity reduc-
tion induced by topsoil loss. Therefore, increasing wage labour oppor-
tunities should be a priority for the policy makers, considering that a
large fraction of Malawian HHs relies on consumption of self-produced
food and, as a consequence, agricultural stresses could produce large
fluctuations on the rural welfare (Wuepper et al., 2018; Frelat et al.,
2016).

6. Conclusions

In this paper we investigate the distributional economic effects of
soil loss in Malawi by carrying out a micro-econometric analysis using
socio-economic, climatic and topsoil loss data both at plot and HH level
for the periods 2011/2012 and 2012/2013. Malawi offers a favorable
setting for our analysis, being a country with a severe soil erosion and
increasing exposure to climate shocks that contribute to worsening the

erosion phenomena.
The empirical analysis employs a set of unconditional quantile re-

gression models to catch the distributional impacts on maize pro-
ductivity and welfare outcomes, namely per capita consumption and
caloric intake. Overall, we show that the topsoil loss severely impacts
the productivity and welfare of most vulnerable HHs, undermining the
capacity to escape from a poverty status. Incentivizing ex-ante adapta-
tion strategies seems to be an effective strategy to increase their welfare
as well as their ex-post coping ability. Policy makers should thus sustain
the adoption of these practices for poorer HHs in order to increase their
livelihood options in face of increasing natural events, such as erosion
phenomena. At the same time, increasing wage labor opportunities
would enhance the income diversification, mitigating the risks of wel-
fare fluctuations.

Our analysis on the aggregated effects indicates that the impact of
topsoil loss in the Malawian economy is sizable, corresponding to a
reduction of national maize production ranging from 6.8 to 20%; the
monetary value of this loss ranges from 1% to 3% of GDP for a topsoil
loss increase of 10% and 30%, respectively. Moreover, both effects on
agricultural productivity and welfare outcomes are not equally dis-
tributed, disproportionately affecting least-productive HHs and con-
tributing to worsen their condition.

We suggest that subsidizing fertilizers to least productive HHs fa-
cilitates the replenishment of nutrients lost with the topsoil, but it does
not provide cost-effective targeting criteria. Converserly, erosion con-
trol practices appear more effective in helping vulnerable farmers.
Scope for sustaining information services on sustainable agricultural
practices and suitable erosion control measures exist for the national
and local administrators. Overall, these results depict a situation where
priorities of interventions to tackle soil erosion and ranking of bene-
ficiaries should be based on both the maximization of net returns from
subsidy policies and placed-based criteria (e.g. agroecological zone),
where incentive to erosion control practices could better contribute to
compensate less productive HHs after reviewing targeting rules for the
subsidies.

Alternatively, these farmers could also be rewarded by the adoption
of crop diversification and legumes intercropping which favor the
substitution of chemical fertilizers. Such planning would enhance the
overall country mitigation capacity in facing topsoil loss since adopting
erosion control practices can determine gains up to a half production
and GDP value loss, compared to the baseline case.

Although our analysis focuses on Malawi, the empirical approach
and the results obtained could be useful in other contexts with com-
parable levels of topsoil loss erosion and context. In this respect, we
provide novel findings and policy indications under the plausible hy-
pothesis of a topsoil loss increase scenario. Indeed, defining the range of
topsoil loss financial and social effects should be a priority in order to
control the rate of national soil deprivation and the expected returns
from related mitigation actions. To this end, further research would
benefit from collecting additional data to expand regional and temporal
coverage, which is limited in our study. Finally, it should be highlighted
that our analysis focuses on the on-site distributional effects of topsoil,
while the aggregate effects provided must be intended as static.
Reinforcing feedback loops as a reaction to increasing erosion phe-
nomena should be further addressed along with the sizable off-set costs
of soil erosion.
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Appendix A

Table A1
Unconditional quantile regression (UQR): impact of soil loss on maize productivity.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

agehead 0.002 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.001
(0.002) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

femhead −0.190*** −0.148*** −0.107*** −0.101*** −0.065** −0.055** −0.047** −0.059** −0.042
(0.068) (0.042) (0.029) (0.026) (0.026) (0.025) (0.022) (0.029) (0.033)

educave 0.048*** 0.039*** 0.034*** 0.033*** 0.033*** 0.025*** 0.026*** 0.026*** 0.027***

(0.010) (0.007) (0.005) (0.005) (0.005) (0.004) (0.004) (0.005) (0.005)
hhsize 0.009 0.016** 0.011** 0.008 0.012** 0.009** 0.009** 0.004 −0.000

(0.011) (0.007) (0.005) (0.005) (0.005) (0.005) (0.004) (0.006) (0.006)
disturban −0.020 −0.014 −0.003 −0.015** −0.025*** −0.026*** −0.042*** −0.048*** −0.064***

(0.016) (0.012) (0.009) (0.008) (0.008) (0.008) (0.008) (0.009) (0.010)
plot_area −0.728*** −0.559*** −0.465*** −0.432*** −0.418*** −0.345*** −0.330*** −0.342*** −0.338***

(0.068) (0.043) (0.026) (0.022) (0.022) (0.022) (0.021) (0.026) (0.029)
labour 0.205*** 0.129*** 0.088*** 0.091*** 0.096*** 0.073*** 0.068*** 0.067*** 0.060***

(0.039) (0.023) (0.016) (0.014) (0.014) (0.014) (0.013) (0.015) (0.018)
fert1 0.157*** 0.135*** 0.115*** 0.102*** 0.095*** 0.078*** 0.072*** 0.077*** 0.059***

(0.016) (0.012) (0.008) (0.007) (0.007) (0.006) (0.006) (0.007) (0.007)
fert2 0.159*** 0.139*** 0.101*** 0.089*** 0.096*** 0.082*** 0.079*** 0.083*** 0.061***

(0.019) (0.011) (0.008) (0.007) (0.007) (0.006) (0.006) (0.007) (0.007)
fert3 0.051* 0.053** 0.055*** 0.058*** 0.065*** 0.068*** 0.062*** 0.078*** 0.059***

(0.029) (0.021) (0.015) (0.013) (0.014) (0.013) (0.015) (0.018) (0.019)
fert4 0.099*** 0.119*** 0.100*** 0.086*** 0.081*** 0.056*** 0.054*** 0.041** 0.035

(0.037) (0.026) (0.019) (0.018) (0.019) (0.018) (0.017) (0.019) (0.023)
organic_fert 0.038*** 0.031*** 0.026*** 0.025*** 0.022*** 0.023*** 0.020*** 0.028*** 0.008

(0.012) (0.008) (0.006) (0.005) (0.006) (0.005) (0.005) (0.007) (0.008)
pesticides −0.254 −0.191 −0.036 0.008 0.029 −0.028 −0.059 −0.020 0.139

(0.227) (0.178) (0.122) (0.119) (0.117) (0.134) (0.105) (0.130) (0.144)
seeds 0.237*** 0.220*** 0.158*** 0.132*** 0.124*** 0.119*** 0.113*** 0.147*** 0.133***

(0.040) (0.027) (0.020) (0.017) (0.017) (0.015) (0.015) (0.017) (0.020)
MV 0.100* 0.057* 0.056** 0.065*** 0.044** 0.039* 0.021 0.069*** 0.037

(0.051) (0.034) (0.025) (0.021) (0.022) (0.021) (0.021) (0.024) (0.028)
D_crop_groundnut 0.105 0.144** 0.147*** 0.148*** 0.192*** 0.127*** 0.133*** 0.110* 0.069

(0.101) (0.067) (0.047) (0.051) (0.049) (0.048) (0.048) (0.061) (0.076)
D_crop_other 0.310*** 0.231*** 0.169*** 0.173*** 0.237*** 0.189*** 0.125*** 0.227*** 0.176***

(0.090) (0.056) (0.041) (0.045) (0.044) (0.038) (0.040) (0.051) (0.063)
D_crop_legume 0.258*** 0.287*** 0.241*** 0.245*** 0.367*** 0.389*** 0.333*** 0.471*** 0.571***

(0.077) (0.057) (0.042) (0.041) (0.045) (0.044) (0.049) (0.061) (0.080)
s_r_spei 0.144** 0.079* 0.057 0.029 0.023 0.020 −0.009 −0.002 −0.037

(0.067) (0.045) (0.035) (0.029) (0.030) (0.027) (0.026) (0.032) (0.036)
s_d_spei −0.480*** −0.350*** −0.226*** −0.165*** −0.169*** −0.154*** −0.106*** −0.126*** −0.064*

(0.070) (0.047) (0.038) (0.030) (0.030) (0.026) (0.025) (0.032) (0.035)
topsoil_loss −0.262*** −0.235*** −0.173*** −0.106*** −0.099*** −0.069** −0.032 −0.028 −0.032

(0.065) (0.041) (0.035) (0.028) (0.028) (0.027) (0.022) (0.027) (0.032)
year_2013 0.526*** 0.290*** 0.245*** 0.187*** 0.206*** 0.190*** 0.137*** 0.146*** 0.079*

(0.098) (0.066) (0.051) (0.041) (0.043) (0.036) (0.035) (0.042) (0.047)
eros_contr: terraces 0.091** 0.144* 0.098* 0.089* 0.049 0.027 0.015 0.004 0.133**

(0.045) (0.085) (0.058) (0.052) (0.058) (0.055) (0.055) (0.072) (0.064)
eros_contr: bunds −0.067 −0.016 0.012 −0.018 0.002 0.038* 0.003 −0.038 −0.034

(0.054) (0.039) (0.027) (0.022) (0.026) (0.023) (0.023) (0.027) (0.030)
eros_contr: vetiver grass 0.148* 0.167** 0.092* 0.090* 0.087* 0.096* 0.106** 0.142** −0.020

(0.090) (0.074) (0.054) (0.051) (0.048) (0.050) (0.048) (0.064) (0.056)
eros_contr: tree belts 0.015 0.190 −0.099 0.014 0.023 0.032 0.022 0.073 0.061

(0.335) (0.222) (0.183) (0.157) (0.169) (0.145) (0.145) (0.199) (0.187)
D_fallow: yes −0.078 −0.041 −0.092** −0.062* −0.047 −0.043 −0.027 −0.025 −0.057

(0.079) (0.058) (0.040) (0.036) (0.036) (0.033) (0.031) (0.038) (0.042)
S 0.176*** 0.185*** 0.174*** 0.206*** 0.190*** 0.170*** 0.237*** 0.247*** 0.264***

(0.050) (0.031) (0.022) (0.025) (0.026) (0.022) (0.024) (0.032) (0.036)
_cons 5.070*** 5.937*** 6.252*** 5.981*** 6.147*** 6.463*** 6.340*** 6.459*** 7.025***

(0.613) (0.390) (0.320) (0.265) (0.272) (0.263) (0.222) (0.258) (0.311)
N 9244

Notes: robust standard errors in parentheses obtained through bootstrapping with 500 replications. * p < 0.1, **p < 0.05, ***p < 0.01; agroecological zone
dummies and interactions between agroecological zone and topsoil loss are included.
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Table A2
UCR – effect of topsoil loss on HH real per capita consumption expenditure (ln MWK).

(1) (2) (3) (4) (5) (6) (7) (8) (9)

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

agehead 0.001 0.001 0.001 0.001 0.000 0.001 0.000 0.000 −0.000
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

femhead −0.136*** −0.152*** −0.149*** −0.120*** −0.099*** −0.098*** −0.063*** −0.002 0.075**

(0.030) (0.026) (0.024) (0.021) (0.022) (0.024) (0.024) (0.025) (0.035)
educave 0.018*** 0.015*** 0.017*** 0.018*** 0.016*** 0.016*** 0.018*** 0.025*** 0.024***

(0.004) (0.003) (0.003) (0.003) (0.003) (0.004) (0.004) (0.004) (0.005)
hhsize −0.116*** −0.125*** −0.136*** −0.142*** −0.149*** −0.149*** −0.148*** −0.152*** −0.166***

(0.007) (0.006) (0.006) (0.006) (0.005) (0.006) (0.006) (0.008) (0.010)
disturban −0.010 −0.008 −0.026** −0.019 −0.016 −0.024* −0.034** −0.039** −0.034

(0.016) (0.013) (0.013) (0.013) (0.013) (0.014) (0.013) (0.016) (0.023)
spfarm2 −0.109*** −0.101*** −0.112*** −0.099*** −0.064*** −0.024 −0.007 −0.021 0.024

(0.027) (0.022) (0.021) (0.019) (0.020) (0.021) (0.021) (0.023) (0.030)
wealth 0.111*** 0.130*** 0.151*** 0.159*** 0.182*** 0.202*** 0.219*** 0.277*** 0.375***

(0.010) (0.009) (0.010) (0.010) (0.011) (0.011) (0.012) (0.016) (0.026)
infraindex 0.071*** 0.081*** 0.089*** 0.113*** 0.130*** 0.129*** 0.126*** 0.110*** 0.104***

(0.012) (0.012) (0.011) (0.012) (0.013) (0.014) (0.015) (0.017) (0.025)
parliament 0.078** 0.093*** 0.060** 0.070** 0.004 0.036 0.027 0.022 0.045

(0.035) (0.032) (0.030) (0.030) (0.032) (0.032) (0.034) (0.040) (0.051)
plot_area −0.011*** −0.008** −0.006* −0.005 −0.003 −0.005 −0.005 0.003 0.002

(0.004) (0.004) (0.004) (0.003) (0.004) (0.004) (0.004) (0.004) (0.005)
D_crop_maize 0.221** 0.161** 0.147** 0.141** 0.137** 0.051 −0.005 −0.076 −0.145

(0.094) (0.066) (0.062) (0.057) (0.060) (0.057) (0.059) (0.065) (0.089)
D_crop_groundnut 0.056** 0.042* 0.065*** 0.068*** 0.077*** 0.081*** 0.078*** 0.062** 0.027

(0.027) (0.023) (0.024) (0.022) (0.025) (0.024) (0.024) (0.029) (0.038)
D_crop_legumes 0.012 0.044 0.053 0.042 0.054* 0.020 −0.009 −0.001 0.072

(0.040) (0.034) (0.032) (0.032) (0.033) (0.029) (0.034) (0.042) (0.056)
D_crop_other 0.037 0.038* 0.024 0.029 0.032 0.004 −0.013 −0.025 −0.045

(0.026) (0.023) (0.022) (0.021) (0.023) (0.023) (0.023) (0.026) (0.036)
s_r_spei 0.058 0.046 0.064** 0.051 0.030 0.018 −0.009 −0.052 −0.013

(0.036) (0.033) (0.031) (0.032) (0.029) (0.032) (0.033) (0.038) (0.054)
s_d_spei −0.077* −0.061* −0.055* −0.019 −0.048 −0.066** −0.059* 0.054 0.022

(0.045) (0.037) (0.033) (0.033) (0.030) (0.030) (0.030) (0.033) (0.043)
topsoil_loss −0.065*** −0.081*** −0.087*** −0.068*** −0.044*** −0.015 −0.017 0.028 0.027

(0.016) (0.015) (0.014) (0.015) (0.015) (0.016) (0.017) (0.019) (0.025)
year_2013 0.555*** 0.717*** 0.864*** 0.995*** 1.157*** 1.291*** 1.421*** 1.610*** 1.632***

(0.043) (0.038) (0.038) (0.039) (0.040) (0.045) (0.056) (0.074) (0.090)
cons 10.085*** 10.658*** 11.010*** 10.953*** 10.982*** 11.015*** 11.398*** 11.343*** 11.746***

(0.224) (0.187) (0.191) (0.178) (0.189) (0.192) (0.200) (0.224) (0.308)
N 7255

Notes: robust standard errors in parentheses obtained through bootstrapping with 500 replications. * p < 0.1, **p < 0.05, ***p < 0.01; district dummies are
included to account for administrative fixed effects.
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Table A3
UCR – effect of topsoil loss on per capita caloric intake (ln calories).

(1) (2) (3) (4) (5) (6) (7) (8) (9)

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

agehead 0.002* 0.001** 0.001 0.001 0.001 0.001** 0.001*** 0.001** 0.001
(0.001) (0.001) (0.001) (0.001) (0.000) (0.000) (0.001) (0.001) (0.001)

femhead −0.051 −0.058** −0.036* −0.049** −0.032* −0.010 −0.001 0.016 0.014
(0.038) (0.024) (0.019) (0.019) (0.017) (0.016) (0.019) (0.020) (0.025)

educave 0.009* 0.007** 0.007** 0.008*** 0.008*** 0.009*** 0.008*** 0.004 0.005
(0.005) (0.003) (0.003) (0.003) (0.002) (0.002) (0.003) (0.003) (0.004)

hhsize −0.036*** −0.049*** −0.060*** −0.072*** −0.077*** −0.079*** −0.083*** −0.083*** −0.082***

(0.007) (0.005) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.005)
disturban −0.019 −0.001 −0.001 −0.009 −0.004 −0.003 −0.003 0.005 0.017

(0.023) (0.013) (0.011) (0.010) (0.010) (0.009) (0.010) (0.011) (0.012)
spfarm2 −0.038 −0.042** −0.043*** −0.058*** −0.052*** −0.027* −0.054*** −0.051*** −0.016

(0.032) (0.021) (0.016) (0.016) (0.016) (0.014) (0.015) (0.016) (0.020)
wealth 0.072*** 0.051*** 0.049*** 0.053*** 0.047*** 0.048*** 0.048*** 0.050*** 0.046***

(0.012) (0.008) (0.007) (0.007) (0.007) (0.007) (0.008) (0.008) (0.011)
infraindex 0.048*** 0.031*** 0.024** 0.020** 0.019** 0.011 0.015 0.012 0.024

(0.017) (0.011) (0.010) (0.009) (0.010) (0.009) (0.011) (0.012) (0.015)
parliament 0.043 0.028 0.011 0.027 0.030 0.038 0.019 0.022 −0.032

(0.046) (0.030) (0.027) (0.025) (0.024) (0.025) (0.026) (0.027) (0.032)
plot_area −0.003 0.003 0.005 0.006* 0.005* 0.002 0.002 0.004 0.002

(0.005) (0.004) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.004)
D_crop_maize 0.145 0.018 0.014 0.033 0.019 −0.011 −0.005 −0.020 −0.033

(0.126) (0.068) (0.056) (0.050) (0.049) (0.045) (0.044) (0.048) (0.064)
D_crop_groundnut 0.032 0.008 0.024 0.038* 0.008 0.006 0.021 0.026 0.032

(0.040) (0.023) (0.019) (0.020) (0.018) (0.018) (0.019) (0.020) (0.027)
D_crop_legumes 0.002 0.023 −0.001 −0.007 0.002 0.008 0.026 0.011 0.018

(0.056) (0.035) (0.027) (0.028) (0.025) (0.024) (0.028) (0.027) (0.035)
D_crop_other −0.044 −0.015 −0.024 −0.020 0.003 −0.018 −0.009 −0.014 0.007

(0.037) (0.023) (0.020) (0.019) (0.017) (0.017) (0.017) (0.021) (0.024)
s_r_spei −0.065 −0.052 −0.017 −0.004 0.012 −0.006 −0.005 0.013 0.003

(0.052) (0.033) (0.028) (0.024) (0.025) (0.023) (0.025) (0.026) (0.032)
s_d_spei −0.079* −0.059* −0.024 −0.025 −0.025 −0.022 −0.024 −0.005 −0.009

(0.045) (0.032) (0.016) (0.014) (0.005) (0.017) (0.022) (0.025) (0.029)
labour 0.001 0.000 −0.001 −0.002 −0.001 0.000 −0.002 −0.003 −0.002

(0.004) (0.003) (0.002) (0.002) (0.002) (0.002) (0.002) (0.003) (0.003)
fert1 0.000 0.002 0.003 0.004** 0.002 0.002 0.002 0.002 0.003

(0.003) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
fert2 0.005 0.007*** 0.005*** 0.005*** 0.005*** 0.004** 0.003* 0.004** 0.002

(0.003) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
fert3 0.014*** 0.001 0.004 0.002 0.005 0.006* 0.004 0.006* 0.009*

(0.005) (0.004) (0.003) (0.003) (0.003) (0.003) (0.003) (0.004) (0.005)
fert4 −0.003 −0.003 0.003 0.004 0.006* 0.005 0.004 0.002 0.002

(0.008) (0.005) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.005)
organic_fert −0.001 0.001 0.002 0.003** 0.003** 0.003** 0.002 0.003** 0.005**

(0.003) (0.002) (0.001) (0.001) (0.001) (0.001) (0.002) (0.002) (0.002)
pesticides −0.025 −0.042 −0.012 −0.004 −0.001 −0.001 −0.012 −0.014 −0.019

(0.049) (0.028) (0.022) (0.020) (0.020) (0.019) (0.017) (0.020) (0.024)
seeds 0.011 0.008* 0.008* 0.009** 0.009** 0.006 0.010** 0.011** 0.007

(0.008) (0.005) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.005)
topsoil_loss −0.063*** −0.089*** −0.060*** −0.061*** −0.039*** −0.042*** −0.038*** −0.025* −0.027*

(0.022) (0.014) (0.012) (0.012) (0.012) (0.012) (0.011) (0.013) (0.016)
year_2013 −0.062 0.059 0.054* 0.102*** 0.118*** 0.118*** 0.172*** 0.170*** 0.209***

(0.063) (0.038) (0.031) (0.030) (0.029) (0.027) (0.029) (0.031) (0.041)
cons 6.999*** 7.700*** 7.746*** 7.928*** 7.827*** 7.972*** 8.060*** 8.028*** 8.239***

(0.300) (0.182) (0.152) (0.143) (0.146) (0.140) (0.144) (0.162) (0.191)
N 7255

Notes: robust standard errors in parentheses obtained through bootstrapping with 500 replications. * p < 0.1, **p < 0.05, ***p < 0.01; district dummies are
included to account for administrative fixed effects. AEZ dummies are included to account for agroecological fixed effects.
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Appendix B

Appendix C. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ecolecon.2020.106764.
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